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The problem of minimizing functionals of particular form for constraints
given by linear differential equatlons with varlable coefflicients and lilnear
boundary conditions of' general form is investigated. The functionals are
given 1n the form of integrals of functions of the length of the control
vector. The controls enter linearly into the right-hand sides of the differ-
ential equations and are bounded in modulus. The question of uniqueness and
existence of optimum controls 1s solved for similar problems and the connec-
tion of these problems with problems of fast response is also establlshed;
methods of finding the gradients of the functions to be minimlzed by using
the solution of certaln systems of differentlal equations are 1ndicated.

Let us consider the tollowing variational problem : To find the m-di-
mensional vector function U(t) satisfying the restriction
m

U= (Sur o) <U.0 0.9
which will achleve a minimum of t;:Iintegral
T
r=\7qupa (0.2)
and will transform a point of the Gooplane
LyXo = Yo, X, (2) = X, (0.3)
of n-dimensional space into a poilnt of the plane
LX, =0, X () = X, (0.4)
along the trajectory of a system of differential Equations
X =AX + BU (X =dX/dt) (0.5)

within the time 7. Here X, X, and ¥, are n-dimensional vectors, X(t) 1s
an n-dimensional vector function, L, and [, are constant nth order square
matrices of ranks l, < n, and l, < n, respectively, 4(t) is an nth order
square matrix of the functions 6., (¢), B(t) 1s 2 matrix of the functions
b,,{(t) end has n rows and m columns. We shall consider the function (o)
to be twice continuously differentiable, given for g & [O,-k oo) and such
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that
lf df . df .
0 = f—— == - A s
fO =0, L @=0 7 >0 timg -t 00
We shall consider the functions @ (t), bij (£}, and Uy (f) given for
t=[0, |- ), where we shall henceforth limit ourselves to the case when
these functions are bounded, analytic and, moreover
Uet)>c>0, 1[0, - o) (0.7)

where ¢ 1s a fixed number.

In order for Equations (0.3) which defines the 1nitial plane G, to be
consistent, condition

rank(Ly,¥,) = rank 1, = I, (0.8)
must be satisfied.

The basic purpose of this paper is to obtain a method of finding the
vector function U(¢) which solves the formulated variational problem. How-
ever, to do this it is first necessary to investigate the questlon of the
uniqueness of the desired function U(z) and to prove its existence. We shall
designate the formulated variational problem as problem 1. At the same time
let us consider the problem of minimization of the integral (0.2) when
JF(U|) = 1, under the restriction (0.1) and the constraints (0.3) to (0.5),
i.e. the fast-response problem, which we shall henceforth designate as prob-
lem 2.

1. Uniqueness questions, In order to derive the uniqueness conditions
for the desired vector function U(t) (the optimum control}, let us use the
scheme proposed in [1]. According to the maximum principle, the optimum
control may be found from the condition for the maximum of the function

H(A, X, U) = A*AX + A*BU — f (| U))

in U in the domain defined by the restriction (0.1), where A(:z) 1s a non-zero
solution of the system of n differential equatlons

A = — A¥A (1.1)
which satisfies transversality condltions of the form
A (0) = Ay, KA, =0, KAT) =0 (1.2)

where K, and X, are real, constant nth order square matrices of ranks n — lo
and n — 1, respectively, which satisfy conditlons

LK* = 0, LK*=0 (1.3)

Here and henceforth the asterisk will denote the transposition operation.
If the inverse functlon for df/doc = h (0) 1s denoted by o(n), then the opti-
mum control U(t) may be expressed from the condition for the maximum of the
function § in terms of the solution of the system (1.1) by means of Formula
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I*A
[B¥A(S U B*AD for o (| B*A ) <U, (1)
U e B*A i (1'4)
(A V-0 for s(IB*A) 2> U, (1)
The analogous Formula for problem 2 is
B*A
U 1) = g Us®) (1.5)

Let us note that Expressions (1.4) and (1.5) uniquely determine a function
U, continuous on the left, only when the vector B*A vanishes at only a finite
number of points of the interval (O, T]. Otherwise, the analytlc vector
function B*A = (O for t & [0, T']. However, according to the maximum princi-
ple, the vector A(t), corresponding to the optimum control, should not be
zero. Hence, in order to eliminate the possible ambigulty of the optimum
control, it is necessary to require that the relation A = () should result
from condition B*A = (). If the vector function B*\ is expanded into
the series o0
B*A = D) Gi*A,

k=_0

then the obtalned condition will be equivalent to the fact that the system

of Equations
Gihy= 0 (k=0,1,...) (1.6)

has only the zero solution Ao = 0. When the martices 4 and p are constant,
the matrices G, are determined by Formulas
— 1)k k
G~ - B* (4%
Hence, it 1s seen that the system {1.6) will be equivalent to a finite
system of Equations

B* (A" A, =0 (k=0,1,...,r—1) (1.7)

where r 1s the degree of the minimuim polynomial of the matrix 4*, r S; n.
The system (1.7) will have only the zero solutlon A, = O if and only if n
linearly independent vectors are found among the r X m vector columns of

the matrices B, AB, o Ar—lB (18)

Henceforth, the condition of unique definability of U(t) in terms of A(t)
will be called condition A.,

The vector function U(t) satisfying condition (0.1) and transforming a
certain point X, & G, within the time T along the trajectory of the system
(0.5) 1into any point X; €& G, (G, is a plane given by (0.4)), will be
called the admissible control. The admlssible control satisfying the raxi-
mum principle will be called the extremal control.

Theoremn 1.1. Both the optimum and the extremal controls are
unique when condltion A is satisfied.
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Proof . Let us assume that the extremal control UY(¢) transforms the
point X, € G, along the trajectory of the system (0.5) into the point
X, € G, within the time 7T and A, 1s the initial value of the vector Ale)
corresponding to Y(z) according to maximum principle. Multiplying (0.5) by
A* and (1.1) by X* on the left and combining the results, we obtain

(A*X)' = A*'BU
Hence
T
A* (T) X (T) — Ad*X, = \ A*BU dt (1.9)
0

Since the vectors X(T) and A(T) satisfy conditions (0.%) and (1.2),
respectively, then

A*(T)X(@T) =0

Analogously, by virtue of conditions (0.3) and (1.2) on the vectors X,
and A,, the value A,*X, remalns constant for any X, & G, Hence, if U, and
U, are two extremal controls, where A{t) 1s a vector corresponding to the
control U,, then the equality

T T
S A*BU,dt = XA*BUZdt (1.10)
1s valid. ‘
Now let us prove that
T T
g A Ull)dt=g f(l Uy de (1.11)
0 0
In fact, it may otherwise be considered that
T T
\ 74 Uipar>{ 104U a
0 0

from which taking into account (1.10) and the notation

Hy (A, U) = A*BU — f (| U
the lnequality

T T
% Hy (A, Updt <\ Hy (A, Up) d (1.12)
; H

follows.

On the other hand, the function g, achieved a maximum simultaneously with
H, therefore

T T
{ma va>{ oo
b 0

which contredicts inequality {1.12). From equalities (1.10) and (1.11)
there results T

T
S Hy (A, Up) dt = g Hy (A, Uy) dt

0 O

and since m(A, U) achleves a maximum for U = U, ini & 10, T], then H, (A, U)) =
= H (A, Uy) if the continuity of the functions U, and U, on the left 1s taken
into account. The latter ildentity means that the same vector function A(¢)
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corresponds to the extremal controls U, and U, according to the maximum
principle and hence, U; = U,;. by virtue of condition A. Since the optimum
control is the extremal control, the uniqueness of the optimum control 1s
thereby proved also. The theorem 1s proved.

An analogous theorem for problem 2 is valid also upon compliance with
condition A.

2. Existence theorems. Let us first establish a theorem which will
permit the reduction of the problem of the existence of the optimum control
to a problem of the presence of admissible controls [1].

Theorem 2.1. If an admissible control exists in problem 1 and

condition
rank (Lo*, ob* (T) L*=n (2.1)

is satisfied, where &(T) is fundamental, normalized matrix of the system
X = 4X, then an optimum control exlsts also.

Proof . Let us consider that a class of measurable, bounded vector
functions, given in t & [0, T] is selected as the class of admissible controls.
The set of all admissible controls 1s non-empty, hence, the set of values
of the functional (0.2) corresponding to the set of all admissible controls
has the exact- lower bound 7,. By definitlon of the exact lower bound, there
exlsts a sequence of admissible controls U, (¢) such that

lim 1 (U,) =1, (2.2)
k—+o00

Each control U, {¢) transfers a certain point X, (0) € G, into the point
X, (T) € G,. By the Cauchy formula we have
T

X, (T) = ® (1) [Xk 0) + S ¥Y*BU, dt] (2.3}
0
from which by virtue of the boundary conditions in (0.3) and (0.4) we have
T
LoX, (0) = Yo, Li® (T) X, (0) = — Li® (T) S V' BUdt =1,
0

Here t* denotes the matrix 3~ !. From the obtained system of 2n equations
in X,(O) it is possible to select n equatlions such that the determinant of
the latter system would be different from zero ('chis 1s possible since con-~
dition (2.1) is satisfied). It 1s easy to see that the components of the
vector &, are bounded 1n a set, therefore the components of the vectors
X (0) and X, (T) are also bounded in a set. Hence, there exist sub-sequences
of the sequences X, (0) and X, (T) such that

lim X, (0) = X,, ql_i’xilo' X, (1) = X(T) (2.4)

q—+—+00

Moreover, the relation (2.3) remains valid for the vectors X (T) and
X, (0). The components of the vectors U () will be elements of the Hilbert
space L,[0,7] bounded both in absolute value and in norm, hence, a sequence
of vectors whose appropriate components converge weakly to certaln limits
forming the vector function Uo(t , may be separated out. According to
Banach-Saks theorem [2], a sequence Uy, may be separated out of the obtained
weakly convergent sub-sequence such tht the sequence

4
, 1
U/ =7 U,
=1

possesses the property that the appropriate components of the vectors U,'(t)
converge in the norm of the space [, to components of the vector U, t).
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F%nally, it 1s possible to separate out a sub-sequence U/(¢) from the sequence
U/(¢), which will converge almost everywhere to U;(t) [2]. Let us note that
relation (2.3) remains {rue for the vectqrs

4 !
Vo M [P IR N
X/ (1) = 72 X, (1), X0) = T.Z X, (0)
1=1 =1
and U/'(¢). Moreover. 1t 1is evident that U(¢) satisfy the restriction (0.1),
X,/ (0) € Gy, X;” (T) € G;. Consequently, the tontrols U,ﬁt) will be admissible
and, passing to the 1imit in the equalities (2.2) and (2.3), we obtain

'

T
X (1) = © (@ (X, + S ¥*BU, dt) , \ 10D ar = 1, (2.5)
(1) 0

Here we used the assertion that the Cesaro sequences X/(0), X/(T) con-
structed by means of the sequences (o), T), converge to the same
limits, as do the original sequences [3], the’ relations (2.4) and the con-
vexity s. Moreover, passing to the 1imit in the inequality

(U, O <U. ()

and, in case of need, changing the values of U,(¢) in a set of measure zero,
we obtain

[(Ug IS U, (1) (2.6)

If i1t 1s taken Into account that by virtue of the closedness of the
manifolds Gy, G, X¢ € Gy, X (T) € Gy, the optimality of the control U, (¢)
results from relations (2.5) and (2.6). The theorem is proved.

N ot e . An analogous theorem is also valid for problem 2 with the sole
difference that condition (2.1) must be satisfied for any t.

In order to investigate the question of the exlistence of admisslible con-
trols, let us consider the classical Lagrange problem of minimizing the
functional

1=\ udt 2.7

oL

under the differential constraints (0.5) and boundary conditlons of the form
X (0) = X,, X(T)=0 (2.8)

The Euler equations for this problem, which we shall henceforth call
problem 3, have the form

X =A4AX + BY, AN = —A*A, U = B*A (2.9
Ir ¥(t) denotes the fundamental normalized matrix of the system
A = — A*A,

then by the Cauchy formula taking condition (2.8) into account, we obtain

T
X (1) = (1) (X, +\ W*BB*¥A, dt) = 0
.0
Hence, we have a system of linear algebralc equatlons
T
X, +V(T)A, =0 (V(T) = & W*BB*Y dt) (2.40)

0
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for the determination of j,.

If condition A is satisfied, the matrix v(7) is nonsingular.

In fact, a vector A,5=0 exists otherwise, such that V(T) Ay =0, hence
there results the relation
T
AV (T) Ay = S B*Y¥AN di =0 or B*WA,=0 for t& [0, T}
0
which contradicts condition A.

Consequently, for any T and arbitrary X, the unique solution of the sys-

tem (2.10) AT, X)) =—V1(T) X, (2.11)
exlsts, which determines the solution of problem 3 by means of Formula
U(t, T, Xo) = B* (&) ¥ (1) Ay (T, X,) (2.12)

The value of the functional I for the found extremum control 1s expressed
in the form T

I(T, X,) =S [B*WA, (T, X)) dt =
0

=A* (T, Xp)V(T) A (T, Xp) = — A (T, X)) X, (2.13)

Let us show that I(7T, X,) will be non-increasing function of T. Actually,
under the assumption made I(T, X,) will be an analytic function of I whose
derilvative is

dl

=5 =UNT, T, X)) + 2A* (T, X))V (T)

dAn
aT
On the other hand, differentliating the left-hand side of the identity
(2.10), obtained after the substitution of the function A, (7, X ) in place
of Ao, We obtain
dv dAo __
TSI, X +V () SR =0
Hence, the ldentity

U T, T, Xo) + A (T, X) V(1) e =

results.

Taking the obtained identity into account, the derilvative dI/ET can be
rewrltten as

dI/dT = — U*(T, T, X,) (2.14)
Hence, the function .
I(T, X = XV (D) X,
which decreases monotonlcally, tends to the finite limit r(x;) ag 7 - + =,

By virtue of the arbitrariness of X, and the symmetry of the matrix v2(T)
it i1s easy to see that the finite limit
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lim V' Y(7) - -V, (2.15)
To+co
and the finlte limit
I(X,) = lim X#V-1(T) X, = X,*V,X, (2.16)
T—sico
exist
Moreover, the relatlons
lim A (7,X) = =V, X,, lim U(T, T, X,) =0 (2.17)
1T-r1c0 T—10

are valid.

Since the matrix y~*(7) 1s positive-definite and symmetric, all its charac~
teristic numbers will be poslitive. Hence, there results from the convergence
of the matrix V"' (T) to the matrix V, as T - + = that the characteristic
numbers of the matrix y~1(7) tend to the characteristlc numbers of the symmet-~
ric matrix V,. The characteristic numbers of the martix V), willl therefore
be non-negative real numbers. That case 1s of Interest when all the charac-
teristic numbers of the matrix V, would be zero. This last property willl
hold if, and only 1if, the greatest characteristic number of the matrix ryT)
approaches zero as T - + », Since the characteristic numbers of the inverse
matrix V' (T) are inverse to the characteristic numbers of the matrix v(T),
the derived condition 1s equlvalent to the fact that the least characteristic
number of the matrix V() tends to + @ as T —» + =.

It 1is known [#] that the least characteristic number of a symmetric mat-
rix ¥ 1s found by means of Formula
v, = min Ag*NA,
[ A i1
Therefore, all the characteristic numbers of the matrix V, will equal zero
if, and only if, condition
7
lim \(B*‘I’Ao)zdt o oc (2.18)
T4 -0

1s satlsfled for any A, =~ ()

Now, 1t is not difficult to resolve the question of the exlistence of
admissible controls.

Theorem 2.2. 1) For any T there exlsts a p > O such that for
an arbitrary point X, from the neighborhood of the origin of radius 0, | Xol<p,
the solution of problem 3 determines the admissible control in problems 1
and 2 by means of Formula (2.12) 1if condition A 1s satilsfiled.

2) If conditions A and (2.18) are satisfied, then for any point X, there
exists a T, > O such that for T > I, the solutign of problem 3 determines
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the admissible control in problems 1 and 2 by means of Formula {(2.12).
Proof . The first statement of the theorem results from the relation
lim U2 (¢, T, Xp) = 0 for | Xy]—0

and Formula (0.7), therefore, let us prove the second statement of the theo-
rem. According to what has been proved the matrix ¥, = 0, consequently

lim A (T,X) =0 for T — -+ oo 2.19)
The function T
I (Xe T) = S U (1, T, X,) dt

0
being a meromorphic function of 7, tends to zero as T - + =, therefore, the
function T+A4A
P (T, A, X)) = S Ut (i, T + A, X,) dt
T
which also will be mercmorphic function of 7, tends to zero as8 I — + o uni-~
formly in A & [0, + oo]; hence, we have

(T, A Xy =0(TY 2.20
for fixed X,. Differentiating (2.20), we obtain the relation
do/dT = O(T™?) (2.21)

which is also satisfied uniformly in a. Evaluating g¢/47 and taking account
of the relation (2.21), we find that the relation

lim [T, T+ A8, X)+UXT 4+ A, TH+AX) =0 for Ts f 00

1s satisfied uniformly in A & [0+ o0)

It is seen from (2.17) that U2(T'+ A, T+ A, X¢) =0 as I' + + » uniformly
in A= (0, -} oo}, therefore U (T, T+ A, X)) - 0as T ~ + =, uniformly in

A &[0+ o0)

Consequently, for any ¢ > O a Iy, > O 1s found such that for 7 > T, the

inequality
U, ', Xo) <& for t & [T, T]

1s valid.

On the other hand, taking account of the continuity of the function
U, T, Xo) in t, there results from (2.19) that for any £6>0 a T3>0 1is
found such that "> T3 the inequality

U, T, Xo) << e for t [0, Ty]

1s satisfled.

Selecting the constant ¢° from inequality (0.7) as ¢, we obtain a
Ty = max{l, ,T,) such that for 7 > 7, the inequality

[UE, T, Xo) | S U*()  for 1 & [0, 7]
1s satisfied.

The obtained inequality shows that for T > T, Formula {2.12) determines
the admissible control, g.e.d.

N ot e . When condition (2.18) 1s not satisfied for all A, 3} 0, it can.
similarly be shown that

lim U2(t, T, Xo) = [B*(t) (t) VoXol® = U2, Xo) for T — + oo
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The obtalned relation may be used to verify the restriction (0.1). ir
U2 >0 (t, X)), there exists a I” such that for T > T there exists an
admissible control in the consldered problem for given X, .

Theorem 2.2 affords a possiblility of solving the question of the existence
of optimum controls. Henceforth, we shall conslder condition A and condition
(2.1) to be satisfied.

If condition {2.18) is satisfied for any Ay =& 0, then by virtue of Theorem
2.2 for the problem of fast response with the constraints {0.5), {0.3) and
(0.4) and the restriction (0.1), there exlst admissible controls and, there~
fore, there exists a unique optimum controel. The fast~response time
Ty = To{(¥,) will here be a function ¥,. The optimum fast-response control
supplemented by the null vector ¢t & {7y T],will be admissible inthe problem
of minimizing the functlonal (0.2) under the same conditlons. Therefore,
for T'> Ty (Yo) a unique optimum control in problem 1 exists.

If condition (2.18) 1is satlsfied not for any Aq 3= 0, let us conslder prob-
lem 2 with the boundary conditions (2.8). The set of all X, for which this
problem 1s solvable will be called the domain of controllability (it was
shown in [1] that the mentioned set will be convex). If the plane {(0.3)has
a non-~empty intersection with the domain of controllability, then problem 2
has a unlque optimum control, otherwlse, problem?21ls not solvable, When
problem 2 1s solvable, problem 1 has a unlque optimum control only for

T 2> Ty (Yy)
Let us note that by virtue of Theorem 2.2 the domaln of controllability
contains a set of points X, satisfying the inequality

U2 (¢, Xy << U2 (D) t & [0+ o) (2.22)

In concduding this section, let us consider the case when the matrices 4
and B are constant. Let us assume that condition (2.18) 1s satisfied not
for all A, =£0, then there exists a vector Ay =k 0, such that the integral

T
S (B*TAR dt for T — < o0
0

tends to finite limit. Since this integral is an analytic function of T,
its derivatives tend to zero as I -~ + =, from which we have

lim B*(A% A, =0 (k=0,1,...) (2.23)
T-»-+-00

Taking into account compliance with condition A, there follows from the
relation (2.23)
lim ¥ (M A, =0 (2.24)
T—+o0

The equality (2.24) shows that the zero solution of the homogeneous sys-
tem {(1.1) is provisionally asymptotically stable. This latter 1s possible
if, and only if, the matrix of thls system has elgen numbers with negative
real parts. This is equivalent to the matrlx 4 having characteristlc num-
bers with positive real parts. Hence, the following theorem is valid.

Theorem 2.3. If the matrices 4 and B in the system {0.5) are con-
stants, where the system of vector columns of the matrix {1.8) has n linear~
1y independent vectors, all the characteristic numbers of the matrix 4 have
non-positive real parts and

rank (Lg*, eA"L*) =n
for any %, then problem 2 has a unigue solution. Problem 1 is uniquely

solvable only for I' 2> T, (Y,), where 7, (¥, ) 1s the fast-response time 1in
the corresponding problem 2.
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3. Method of solution, Let us first consider the method of solving prob-
lem 2. Since the optimum control has the form (1.5), to look for it is suf-
ficient to find the corresponding initial value A, of the vector A(t). It
was shown in [5] that in the case Ly = L,= £, where £ 1s the unit matrix
of order n, the solution of the prcblem of seekling the initlal A, may be
reduced to the solution of the problem of seeking the conditional extremum
of a certain function, where the latter problem may be solved by the gradlent
method.

The followling assertion may be proved.

Theorem 3.1. The value of the vector Ay defining the optimum con-
trol in problem 2 by means of (1.1) achleves a relative minimum of the func-
tion T

Fy(Xo ) =min F(Ag, X T) =0 (A= AcKo+-{uc)1Bv0A, 1) (3.1
0

under the conditions
Aol =1, KAy=0, KW (T)A,=0

This minimum will be a unique relative extremum of the function 7 and the
values Ay’ and I’ achleving the minimum of F, which 1s zero, are independent

of )(0 = (;W

Proof It follows from the condition of Theorem 2.1 of sectlon 2
that rank (K,, Ky, ¥ (T)) < n. Evidently, the theorem has meaning only when
rank (K¢ K, ¥ lT)) < n, as we shall henceforth assume. Let us assume that
As 1s the value of the vector Ao which defines the optim fast-response
control by means of (1.5) and which transforms the point & Gy into the
point X; € Gy in the time 2’ along the trajectory of the system (0.5). Then
by virtue of the boundary condiltions

X*(T)A(T) =0, Ad*X,= A"Xo AT =Y T)A), X €6, (3.2)

Hence T

Xy *Ad 4 S u, () |B* ¥ A |de =0 (3.9)
1]

where the value F (Ay'y Xgv T') is independent of X, € Gy If the assertion
in the theorem is incorrect, then Fy (X, T') < 0.1t 1s not difficult to see
that F; @Xg, TY) will be continuous function of p, where lim Fy (4 Xo, T7) >0
as u ~ + 0, since condition A is satisfled. Hence, there 1s Found a Mo,

0 < g < 1, such that
Fy (o X T') =0 (3.4)

Using the method of Lagrange multipliers, the necessary conditlons for
the minimum (3.4) 1s obtalned in the form

’

Y*BB*¥A," , .
peXo 4 S TR e d KX 4 W (1) KT 4 AT =0

(1]
KAy =0, K, W(T)A" =0, AS=1

Y.=(y11°'-'yn)' Z*=(21,-..,zn)
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Here Y*, Z* and A are Lagrange multipliers. Let us multiply the first of
these relations by Ap“*; then taking the remalning relatlons as well as (3.4
into account, we obtain 2 = O and then

T
. Y*BB*YA,” .
X, & X —ErR e K Y Y @z =0 (3.5)
°
Let us transform {3.5) to the form
T'
@ (1) [poXo + Ko*Y + S W+ BU (1, A"} dt] 4 K*Z = 0

0
where $(¢) is fundamental, normalized matrix of the system X = 4X and
U(t, Ao”) 1s defined by means of (1.5). Let us rewrite the last expression
as

X @ T)+ K*2=0

then it 1s not difficult to see that the control U(?,A,”) transforms the
oilnt HeXe 4 Kg*Y, from the Ly (oXo 4 Ko*Y) = pyYg,plane into the point
&o(p,o, T"). & G, along the trajectory of the system (0.5) within the time T’
and, hence, 1t will be an optimum fast-response control. On the other hand,
the control paU (I, Ay') transforms the point u X, from the LgigXg = Be¥s plane
into the point WeX (77} € G, along the trajectory of the system {0.3) within
the time T’; this contradicts the uniqueness of the optimum control U{z,As).
The theorem 1s proved.

Theorem 3.1 says nothing about the set of values A, which achleve the
relative minimum {(3.1). It 1s easy to prove that this set will be convex
and closed. In fact, in view of the convexity of the function F the set of
As such that F (A, X,, T) < 0,w1ll be convex and closed. If zero is here
the least value of the function 7 then F (Ay, X4 T) >0 for any ho, from
which 1t follows that the set of those A, for which F (Ao, Xo =290
agrees with the set A, for which F (A,, X,, ) <{ V. g.e.d.

It was mentioned above that the domain of controllablility defined by
Equation (0.5), restriction (0.1) and boundary conditions (O.4) plays a
large part in the clarification of the solvabillty conditions. Theorem 3.1
shows that the domain of controllability coincides with the set of all X
{o = E) for which the function ¥ (for ¥ = O) achieves the least non-positive
'value on the intersection of the sphere |A,| = 1 with the set kW(T)Aq = 0.

Let us now consider problem 1 by assuming that T > To (¥, ), where I,{%,)
is the fast-response time in the corresponding problem 2. The case I=I, (Yo)
i1s of no interest because the control which is optimum with respect to fast
response, will then be the single admissible control. The optimum control in
problem 1 is defined bv Formula

BYYA,
Towa, 7 S (1 B*YA ) for tES
U (t) = { B*WA, (3-6)
TDwA, | ¥ (D for 1t

where § and S’ dencte the sets of allf &= [0, T1,for which the inequalities

O (|B¥FA[)<us(8)  or  O([B*WAG]) > uy ()

are satisfied, respectively.
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If the control (3.6) transfers the point X, € G, into the point
X (T) = Gl along the trajectory of the system (0.5), then as has been shown
in the proof of Theorem 2.1 in Section 2, the following equality

W, = Ao*X0+&lB"“I’AOIo(|B*‘I’A0[)dt +S | B¥WA,u, dt =0 (3.7)

S Se
is valid.

It is now easy to establish a theorem analogous to Theorem 1.

Theorem 3.2. The value of the initial vector Ao defining the
optimum control in problem 1 by means of (3.6) achleves the maximum of the
function

W, =\ 1o (1B¥YA,))) dt
3
under conditions W, = (), Kvo =0, KIIF () Ao = (. The mentioned value
of Ao 1s determined in a unique manner and is independent of Xo = G B

Proof . Let us show that for a fixed Xy & Gy the set of Ao satisfy-
ing the relation (3.7) and the transversality conditions will be a bounded
set of the Xg*Ay < Ohalf-space. In fact for any Ao such that Xg*Aa<0 the
measure of the set S(Ao) will be not less than a certaln positive quantity
since otherwise the relatlon (3.1) is violated. Hence, by virtue of condi-
tion (0.6) and condition A as p - = the inequality limp-1Wy(Xo, uAg)>0 1s
correct uniformly in |[Ao| = 1, satlsfying the transversality conditions. It
follows from above that a y, > O is found such that W; (Xg, pAy) >0 for u>i,
for all Ao subjected to the mentloned restrictlons, which proves the required
boundedness of the set of A, defined above. Therefore, the function W,
achleves it. greatest value under the restrictions mentioned in the conditlons
of the theorem. Let us assume that this maximum 1s achieved for AJ. Using
the method of Lagrange multipllers, the necessary conditions for the relative
extremum of function ¥, may be writcen in the form

, o Y*BB*YA, Y*BB*YA,
H[X04}SG(|B“‘I’AO D lB*\onll S |B*\I’A0'| u*dt+

)

+wm+1) S & (|B*YA, |) Y*BO*¥AS dt + K*Y + ¥+ (T) K* Z =0 (3.8)
S

Koy =0, K, ¥ (T)A) =0, Wy=0

Multiplying the first of equalitles (3.8) on the left-hand side by A¢ %,
we obtaln

@+ 1) S"' (| B*¥A ) (| B*YAS )2 dt = 0
S
Hence, there results u + 1 = 0. Consequently, the equality

® (T) [xo — K&Y, +

Sy

WYoBU (1,'Ay) dt] —K#*Z=0

where U(t,pA0) 1s defined by Formula (3.6),1s applicable., The obtained
equality shows that the control U(!,AJ) will be an extremum control in prob-
lem 1. Hence, if W, achieves a relative extremum for Ay == 0 under condi-
tions (1.2) and (3.72, then Ao determines the extremal control in problem 1
by means of Formula (3.6). Since the extremal control is unique, Formula
(3.6) defines the identical control U(¢,As) for any Ao achleving the pro-
vicional extremum of the function ¥;, From the agreement of the controls
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U(t.Ao) for different Ao 1n a set § of non-zero measure follows the agreement
of the vectors B*¥A, in § for different A,, which is impossible by virtue of
condition A. Hence, the unlqueness of the A, which achieves the conditional
extrimum of the function ¥, is establisned and this proves the required as-
sertion.

Theorems 3.1 and 3.2 show that to find the optimum controls in problems 1
and 2 1t 1s sufficient to find the relative extremum of certain functions,
In practice, however, it is considerably more convenient to solve the prob-
lem of seekling the absolute extremum of certain functions. In the cases
under consideration, finding the relatlve extremums can be successfully re-
duced to problems of seeking the absolute extremums. In fact, in order to
find the optimum control 1in problem 1,it 1s sufficlent to find the absolute
maximum of the function

Wy —Wy| — s (KoAo)* — 1/, (K ¥ (T) Ay)? (3.9)

Analogously, in order to find the optimum control in problem 2, it is
sufficlient to find the absolute minimum of the function

[F (Do Xo, T) | + 13 (Kofo)® + Yo (KW (T) Ag)? (3.10)

which equals zero. The mentioned passage from the relative to the absolute
extremums 1s posslble because of the uniqueness of the relative extremums.
In finding the extremums of (3.9) and (3.10) the gradient method may be

used as 1ts convergence raises no doubts since the desired extremum 1s unique.
In the first case the Ay = AX,/|X,|, where » < O such that W, > 0, might
be chosen as the initial approximation and the 1\0 = — )(0/ [)(0[1n the
second case. In both cases the point X, may be chosen on the Go plane so
that the quantity |X§| would be a minimum. There remains to describe the
method of finding the gradient of the functions (3.9) and (3.10). In case
pVi > 0, the gradient of the function (1.10) has the form

T
ANy = X, + S w* BU (¢, A,) dt - Ko* KA, + ¥* (T) K* K, ¥ (T) A,
1}

(3.11)
The gradient of the functlon (1.11) has the form
T
Abo = sign F (X, +S ¥*BU (t, A, dt) + (3.12)
-0

4+ Ko*KoAy + ¥*(T) K* K, ¥ (T) Ao

The function U(t,A,) in (3.11) 1s defined by Expression (3.6) and the
function U(t,A,) in (3.12) has the form of (1.5}. Let us dwell in more de-
tail on the calculation of the gradient of the function (3.9) by means of
Formula (3.11). The solution of the system of equations (0.5), where U is
defined by (3.6), with the initial data X(0) = X may be written

T

X (1) = @ (7) (X, +S W*BU (t, A, dt ) (3.13)
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Let us consider the solution of the system of equatlons
Z=—AL+B(T—)U((T -1, (3.14)

with the initial conditions Z (0) = Z,. Then for{ = T we obtain
T

Z(T) = @ (— T)[zo + S O@WB{T —1t)U(T —1 dt] (3.15)
If the change of variable v = T —? t 1s made 1in the intergral of the ob-

talned expression, then (3.15) becomes
T

Z (T) = ¥* () Z, +S ¥+ (1) B () U () dt (3.16)

0

Assuming Zg = K *K,¥ (T) A, in Formula (3.16), we then obtain Ex-
pression

AA, = Z (T) + X, + Ko* KA, (3.17)

for the gradient (3.10).

In deducing (3.17), 1t was taken into account that y(I'—z) 1s obtained
by means of Formula (3.6) by replacing ¢t by T — t. It 1s easy to see that
the vector W (I' — ) Ay = ¥ (— t) ¥ (T) A, 1s obtalned in integrating
the system of Equatilons

Q = A*Q (3.18)
with the initial data Q (0) = W (T) A,. Hence, the desired gradient af,
may be obtained by means of Formula (3.17), where 2Z(T) 1is found by integra-
ting the system of Equations

Z=—AZ+B(T —)U({T —1tQ), Q=A4%Q (3.19)
between O and T with the initial conditions Z (0) = K* K\¥ (T) A,, and
Q(0) =¥ (T)A,. Here U (T — ¢, Q) has the form

B¥(T—)Q
mG(IB*(T—t)m) for T—t eS8
VI —59 2{ B*(T—1)Q
mu*(T—t) for T—tess
Hence, the vector ¥Y(T)A, 1s found by integrating the system A= — A*A

between O and 7 with the initial conditions A(0) = Ao - The gradient (3.12)
1s calculated analogously with the sole difference that U(t,Ao) 1s found by
means of Formula (1.5).
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