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The problem of mlnlmlzing functlonals of particular form for constraints 
given by linear differential equations with variable coefficients and linear 
boundary conditions of general form is investigated. The functlonals are 
given In the form of Integrals of functions of the length of the control 
vector. The controls enter linearly into the right-hand sides of the dlffer- 
entlal equations and are bounded In modulus. The question of uniqueness and 
existence of optimum controls Is solved for similar problems and the connec- 
tion of these problems with problems of fast response Is also established; 
methods of finding the gradients of the functions to be minimized by using 
the solution of certain systems of dlfferentlal equations are Indicated. 

Let us consider the ~ollowlng variational problem : To find the m-dl- 

menslonal vector function U(t) satisfying the restriction 

1 u (t) 1 = (5 Uia (t))“* < u* (4 (0.U 
&I 

which will achieve a minimum of the Integral 

and will transform a point of the Go plane 

&J&J = Y,, xc (4 = x0 (0.3) 

of n-dimensional space into a point of the plane 

L,X, = 0, X(T) = x, (0.4) 
along the trajectory of a system of differential Equations 

X'=dX+BU (X = tlzx/ca) (0.5) 

within the time T. Here &, I& and Yc are n-dimensional vectors, X(t) Is 

an n-dimensional vector function, Lc and L1 are constant nth order square 

matrices of ranks I,, < &and 1, < n, respectively, A(t) Is an nth order 

square matrix of the'functlons c,,(t), B(t) Is a matrix of the functions 

b,,(t) and has n rows and m columns. We shall consider the function f(u) 

to be twice continuously differentiable, given for (3 E [O, f oo) and such 
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that 
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f (0) = 0, g (0) : 0, g > 0, .‘i,hlg = -I- cm (0.6) 

We shall consider the functions c&(t), bij (l), and U,(1) given for 

tCZ[o, i- .m), where we shall henceforth limit ourselves to the cast when 

these functions are bounded, analytic and, moreover 

u*w>c>o, tcz I 
where e Is a fixed number. 

In order for Equations (0.3) which defines 

consistent, condition 

must be satisfied. 

The basic purpose of this paper is to obtain a method of finding the 

vector function U(t) which solves the formulated variational problem. How- 

0, -I- =) (0.7) 

the Initial plane G, to be 

rank(&,Y,) = rank L,, = lo (O-8) 

ever, to do this it is first necessary to Investigate the question of the 

uniqueness of the desired function U(t) and to prove its existence. We shall 

designate the formulated variational problem as problem 1. At the same time 

let us consider the problem of minimization of the integral (0.2) when 

f(I u I) SE 1, under the restriction (0.1) and the constraints (0.3) to (0.5), 
i.e. the fast-response problem, which we shall henceforth designate as prob- 

lem 2. 

1. Uniquonrrrr qurrtlonr . In order to derive the uniqueness conditions 

for the desired vector function U(t) (the optimum control), let us use the 

scheme proposed in [l]. According to the maximum principle, the optimum 

control may be found from the condition for the maximum of the function 

H(A,X,U)-=A*AX-I--A*BU-f((IUI) 

In U in the domain defined by the restriction (O.l), where A(t) is a non-zero 

solution of the system of n differential equations 

A :=-: - A*A (1.1) 

which satisfies transversal1ty conditions of the form 

A (0) == Au, K,A, = 0, h-,A (T) = 0 (1.2) 
where K, and K1 are real, constant nth order square matrices of ranks n - 10 

and n - 1, respectively, which satisfy conditions 

L"K,* = 0, L,K,* = 0 (1.3) 

Here and henceforth the asterisk will denote the transposition Operation. 

If the inverse function for df/&= h (a) Is denoted by a(h), then the optl- 
mum control U(t) may be expressed from the condition for the maximum of the 

function ff in terms of the solution of the system (1.1) by means of Formula 
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for CJ (I B*A I) < u, (1) 

for G (I B’A I) > lJ* (t) 
(1.4) 

The analogous Formula for problem 2 is 

u (Q = ,:::;, u*44 -~ (1.5) 

Let us note that Expresslons (1.4) and (1.5) uniquely determine a function 

(/, continuous on the left, only when the vector B*A vanishes at only a finite 

number of points of the interval [0, I']. Otherwise, the analytic vector 

function H*A E 0 for t E [O, T]. However, according to the maximum prlncl- 

pie, the vector A(t), corresponding to the optimum control, should not be 

zero. Hence, In order to eliminate the possible ambiguity of the optimum 

control, it is necessary to require that the relation A E 0 should result 

from condition B*A - 0. If the vector function B*A is expanded Into 

the series 

B*A = ; Gktkh, 

then the obtained condition will be equivalent to the fact that the system 

of Equations 
GA,,= 0 (k =o, I,... .) (4.6) 

has only the zero solution A,, = 0. When the martlces A and B are constant, 

the matrices Cr are determined by Formulas 

(& = (+* (A*)" 

Hence, it is seen that the system (1.6) will be equivalent to a finite 

system of Equations 

II* (A*)k A, = 0 (k = 0, 1, . . . , r - i) (i-7) 

where r is the degree of the minimum polynomial of the matrix A*, r < n. 

The system (1.7) will have only the zero solution A,, = 0 if and only if h 

linearly independent vectors are found among the r X m vector Columns Of 

the matrices 
B, AB, . . . , A’-‘B (1.8) 

Henceforth, the condition of unique definability of U(t) In terms of A(t) 

will be called condition A., 

The vector function U(t) satisfying condition (0.1) and transforming a 

certain point X, E G, within the time T along the trajectory of the system 

(0.5) into any point X, E GI(G, IS a plane given by (0.4)), will be 
called the admissible control. The admissible control satisfying the maxi- 

mum principle will be called the extremal control. 

T h e o r e m 1.1. Both the optimum and the extremal COntrOlS are 

unique when condition A is satisfied. 
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Hence 

(A*x)’ = A*‘BU 

T 

A*(T) X(T)-Ao*X,=(;A*BUdt (1.9) 

6 

Proof. Let us assume that the extremal control U(t) transforms the 
point X,,C co along the trajectory of the system (0.5) Into the point 
X, E G, within the time T and &, Is the initial value of the vector A(t) 
corresponding to u(t) according to maximum principle. 
A* and (1.1) by X* on the left and combining 

Multiplying (0.5) by 
the results, we obtain 

Since the vectors X(T) and A(T) satisfy conditions (0.4) and (1.2), 
respectively, then 

A* (2”) X (T) = 0 

Analogously, by virtue of conditions (0.3) and (1.2) on the vectors X, 
and Ace, the value &,*& remains constant for any XOE G,,.Hence, if U, and 
Us are two extremal controls, where A(t) Is a vector corresponding to the 
control U1, then the equality 

T T 

s 

A*BU,dt = * A*BU,dt 
I 

(1.10) 

$1 0 
Is valid. 

Now let us prove that 
T T 

c 
f (I UI I) dt = 

s 
f (I Us I) dt 

6 0 

In fact, It may otherwise be considered that 
T T 

(1.11) 

s f(l ulI)dt> f(IU,I) dt s 
0 0 

from which taking into account (1.10) and the notation 

H, (A, U) = A*BU - f (I U t) 

the Inequality 

follows. 

T T 

HI (A, UJdt <(HI (A, U,) d 
(1.12) 

0” 

On the other hand, the function H1 achieved a maximum simultaneously with 
H, therefore 

T T 

c 
HI (A, UI) dt > \ H, (A, U,) dt 

6 0 

which contradicts inequality (1.12). From equalities (1.10) and (1.11) 
there results 

T T 

H, (A, U,) dt 

0 0 

ands)ce&(A, U) achieves a .maxlmum for U = U, in t E 10, Tl, then H, (A, U,) z 
E H(A, U,) If the continuity of the functions U, and U, on the left is taken 
Into account. The latter identity means that the same vector function A(t) 
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corresponds to the extremal controls U, and U, according to the maximum 
principle and hence, Ul G Us. by virtue of condition A. Since the optimum 
control is the extremal control, the uniqueness of the optimum control Is 
thereby proved also. The theorem is proved. 

An analogous theorem for problem 2 Is valid also upon compliance with 
condition A. 

2. Bxletrnor theorem, Let us first establish a theorem which will 

permit the reduction of the problem of the existence of the optimum control 

to a problem of the presence of admissible controls [l]. 

Theorem 2.1. If an admissible control exists In problem 1 and 

condition 
rank&,,*, m*(T)&*)= n (2.1) 

Is satisfied, where @(Z') Is fundamental, normalized matrix of the system 

X = AX, then an optimum control exists also. 

Proof. Let us consider that a class of measurable, bounded vector 
functions, given In 1 E (O,Z'] Is selected as theclass of admissible controls. 
The set of all admissible controls Is non-empty, hence, the set of values 
of the functional (0.2) corresponding to the set of all admissible controls 
has the exact. lower bound 1,. By definition of the exact lower bound,there 
exists a sequence of admissible controls &(t) such that 

lim Z (U,) = I, 
k-+m 

(2.2) 

Each control 9(t) transfers a certain point X,(O).E G,, Into the point 
X, (T)E G,. By the Cauchy formula we have 

x, (T) = Q, (T) [ x, (0) + i y*Bu, dt] 
0 

(3.3) 

from which by virtue of the boundary conditions In (0.3) and (0.4) we have 

&Xk(C)= yc, L,@ (T)Xk(O) = -&.(T)i \Ir*B+ftEZ, 
0 

Here Y* denotes the matrix @-I. From the obtained system of 2n equations 
in &(O) it Is possible to select n equations such that the determinant of 
the latter system would be different from zero (this Is possible since con- 
dition (2.1) is satisfied). It is easy to see that the components of the 
vector 2, are bounded in a set, therefore the components of the vectors 
&(O) and q(T) are also bounded in a set. 
of the sequences K(O) and K(P) such that 

Hence, there exist sub'sequences 

lim X,(O) = X0, 
q--++w 

fywXQ(T) = X(T) (2.4) 

Moreover, 
a(0). 

the relation (2.3) remains valid for the vectors q(T) and 
The components of the vectors U,(t) will be elements of the Hllbert 

space ~~[0,l'] bounded both in absolute value and In norm, hence, a sequence 
of vectors whose appropriate corn onents 
forming the vector function U,(t P 

converge weakly to certain llmlts 
, may be separated out. According to 

Mach-Saks theorem [2], a sequence Uq may be separated out of the obtained 
weakly convergent sub-sequence such th& the sequence 

“i=$ u,j 
j=1 

possesses the property that the appropriate components of the vectors u:(t) 
converge in the norm of the space L= to components of the vector B(t). 
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Finally, It Is possible to separate out a sub-sequence U'(t) from the sequence 
U,'(t), which will converge almost everywhere to U,(t) [29. Let us note that 
ielation (2.3) remains true for the vectors 

1 

j-1 j= 1 

it is evident that U:(t) satisf the restriction (O.l), 
Consequently, the controls Uk 4 t) will be admissible 

and, passing to the limit in the equalities (2.2) and (2.3), we obtain 

X (A') =- CD (2’) (X, -11 Y'BU, dt), 
'1 

s f (1 U, I) dt = I, (2.5) 

Here we used the assertion thit the Cesaro seqiences X,'(O), X;(T) con- 
structed by means of the sequences xe (0), %,(I), converge to the same 
limits, as do the original sequences [3], th relations (2.4) and the con- 
vexity f. Moreover, passing to the limit in the inequality 

I u,’ (4 I < u. (0 

and, In case of need, changing the values of U,(t) In a set of measure zero, 
we obtain 

I u, 0) I d u. (4 (2.6) 

If It Is taken Into account that by virtue of the closedness of the 
manifolds G,, G1, ?&E ce, X(7') E Cl, the optimality of the control l&(t) 
results from relations (2.5) and (2.6). The theorem is proved. 

Note An analogous theorem is also valid for problem 2 with the sole 
difference Chat condition (2.1) must be satisfied for any t. 

In order to Investigate the question of the existence of admissible con- 

trols, let us consider the classical Lagrange problem of mlnimizlng the 

functional 
+zf& (2.7) 

‘0 
under the differential constraints (0.5) and boundary conditions of the form 

?i(O) = x,, X(T)==0 (2.8) 

The Euler equations for this problem, which we shall henceforth call 

problem 3, have the form 

X'=AX_tBU, A'= - A*& u=u*ll (2.9) 

If Y(t) denotes the fundamental normalized matrix Of the system 

n; = - A*h, 

then by the Cauchy formula taking condition (2.8) into account, we obtain 

X (2’) = 0 (2”) (X0 + \T Y*BB*YAQdt) = 0 
-0 

Hence, we have a system of linear algebraic equations 

X,+V(T)A,==O (V(T) = 1 u’*m*Y~ tit) (2.10) 

0 
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for the determination of &,. 

If condition A is satisfied, the matrix V(T) is nonsingular. 

In fact, a vector A,,#0 exists otherwise, 
there results the relation 

such that V'(T)&,= 0, hence 

T 

A,,*V (T) A,, = 1 @*Y&J2 dt = 0 or B*Y& E 0 for t E (0, T] 
0 

which contradicts condition A. 

Consequently, for any 2' and arbitrary X, the unique solution of the sys- 

tem (2.10) 
A,(T, X,)= -v-'(T)X, (2.11) 

exists, which determines the solution of problem 3 by means of Formula 

U (t, T, X,) = B* 0) u’ (t) A, (T, X,) (2.12) 

The value of the functional I for the found extremum control is expressed 

in the form T 

I (T, X0) = \ [B*Yh, (T, X,)P dt = 

= A,* (T, X,) V (T) A,, (T, X,) = - A,* (T, X0) X, (2.13) 

Let us show that I(T', &,) will be non-increasing function of 2'. Actually, 

under the assumption made I(T, I&) will be an analytic function of T whose 

derivative is 

dl 
- = U2 (T, T, X,) + 2A,* (T, X,)V(T) g dT 

On the other hand, differentiating the left-hand side of the identity 

(2.10), obtained after the substitution of the function Ac(T, &,) in place 

of Aor we obtain 

$A,(T, X,)+V(T)$$k o 

Hence, the Identity 

results. 

U2 (T, T, X,) + A,* (T, X,)V(T) $ s 0 

Taking the obtained identity into account, the derivative dI/dl' can be 

rewritten as 

dIldT = -U2(T, T, X,) (2.14) 
Hence, the function 

I (T, X,) = X,*V-‘(T) X, 

which decreases monotonically, tends to the finite limit I(&) as T - + m. 

By virtue of the arbitrariness of &, and the symmetry of the matrix V-'(T) 

it Is easy to see that the finite limit 
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lim I/ ’ (T) - -V, 
T=+tco 

and the finite limit 

(2. I.-)) 

Moreover, the relations 

lim h,(T,X,) = -VlioX,b, Jim U2(7’, T, S,) = 0 (‘.I;) 

Since the matrix r'(1) Is positive-definite and symmetric, all its charac- 

teristic numbers will de positive. Hence, there results from the convergence 

of the matrix Y'(T) to the matrix V, as T + + m that the characterlstlc 

numbers of the matrix rl(Z') tend to the characteristic numbers of the symmet- 

ric matrix V,. The characteristic numbers of the martlx V,, will therefore 

be non-negative real numbers. That case Is of interest when all the charac- 

teristic numbers of the matrix V,, would be zero. This last property will 

hold If, and only If, the greatest characteristic number of the matrix r'(T) 

approaches zero as T - + a. Since the characteristic numbers of the Inverse 

matrix V-l(Z') are Inverse to the characteristic numbers of the matrix Y(T), 

the derived condition Is equivalent to the fact that the least characteristic 

number of the matrix V(T) tends to + m as 7' - + m. 

It Is known [4] that the least characteristic number of a SYmJIetriC mat- 

rix N Is found by means of Formula 

v1 =: min h,*NA,, 
I &, i 1 

Therefore, all the characteristic numbers of the matrix V, wlII equal zero 

If, and only if, condition 

(2.15) 

Is satisfied for any A,$= () 

Now, It Is not difficult to resolve the question of the existence of 

admissible controls. 

T h e o r e m 2.2. 1) For any T there exists a p > 0 such that for 

an arbitrary point & from the nelghborhood of the origin of radlus p,(&,i<p, 

the solution of problem 3 determines the admissible control in problems 1 

and 2 by means of Formula (2.12) If condition A is satlsfled. 
2) If conditions A and (2.18) are satisfied, then for any point T there 

exists a To > 0 such that for T > T, the solutlqn of problem 3 determines 
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the admissible control in problems 1 and 2 by means of Formula (2.12). 

Proof. The first statement of the theorem results from the relation 

and Formula (0.7), 
rem. According to 

The function 

lim U2 (t, T, X0) = 0 for j&I-O 

therefore, let us prove the second statement of the theo- 
what has been proved the matrix V, = 0, consequently 

lim A, (T,X,) = 0 fpr T 4 + 00 (2.19) 

T 

I (X,, T) = 5 Ua (t, T, X,) dt 
0 

being a meromorphic function of 1, tends to zero as T - + 5, therefore, the 
function 'I'+& 

9, V', A, X,,) = i U2 (t, T+ A, X,) dt 
T 

which also will be mesomorphic function of T, tendsto zero as T - + - uni- 
formly in A E [0,-J- oo];hence, we have 

‘P U’, A, X,1 = 0 (T-9 (2.20) 

for fixed X,. Differentiating (2.20), we obtain the relation 

dv/dT = 0(T-2) (2.21) 

which is also satisfied uniformly in b. Evaluating dcp/dT and taking account 
of the relation (2.21), we find that the relation 

lim [u2(T, T + A, X0)-l- u2(T-i- A, T-l-&&)I = 0 for T --* + = 

Is satisfied uniformly In A E[O + C.Z) 

It is seen from (2.17) that U2 (T-i- 11, T-i-A, X0) - 0 as T - + 0) uniformly 
in A~(O,+oo),therefore Ua (T,T+ A ,X0)+ 0 as T - + m, uniformly in 

A E iC+ m). 

Consequently, for any c > 0 a TI > 0 Is found such that for T > Tl the 
inequality 

Us(t, II', XO) < E for t E [I’,, T] 

is valid. 

Cm the other hand, taking account of the continuity of the function 
ti‘jt, T, X,) In t, there results from (2.19) that for any s>O a Tt>O is 
found such that T>Ts the Inequality 

Us(k T, Xo) < s for t E [O, TII 

Is satisfied. 

Selecting the constant o2 from inequality (0.7) as E, we obtain a 
T,, = max(T,,T,) such that for T > To the Inequality 

is satisfied. 
1 U(l, T, Xd 1 < U + (4 for 1 E [0, T] 

'J?he obtained inequality shows that for T > T, Formula (2.32) determines 
the admissible control, q.e.d. 

Note. When condition (2.18) is not satisfied for all &fO,it CEUL 
similarly be shown that 

lirn UZ(~, T, X0) = [O*(f) W(f) VoxOl’ = Ur(tg %d for T -c + O” 
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The obtained relation may be used to verify the restriction (0.1). 
u*'(t) > U" (1,X,), there exists a T' such that for T>T' there exists aif 
admissible control in the considered problem for given X,. 

Theorem 2.2 affords a possiblility of solving the question of the existence 
Henceforth, we shall consider condition A and condition 

If condition (2.18) is satisfied for any A,#O,then by virtue ofTheorem 
2.2 for the problem of fast response with the constraints (0.5), (0.3) and 
(0.4) and the restriction (O.l), there exist admissible controls and, there- 
fore, there exists a unique optimum control. The fast-response time 
Tc = Tc(Y,) will here be a function X. The optimum fast-response control 
supplemented by the null vector t E (Tc, T], will be admissible in the problem 
of mlnimlzing the functional (0.2) under the same conciltlons. 
for T >To (Yo) a unique optimum control in problem 1 exists. 

Therefore, 

If condition (2.18) Is satisfied not for any &#&let us consider prob- 
lem 2 with the boundary conditions (2.8). The set of all x. for which this 
problem is solvable wiil be called the domain of controllabIlity (it was 
shown in [I] that the mentioned set will be convex). Xf the plane (0.3)has 
a non-empty intersection with the domain of controilabillty, then problem 2 
has a unique optimum control, otherwise, problem2is not solvable. When 
problem 2 is solvable, problem 1 has a unique optimum control only for 

T>,T, (Yof. 
Let us note that by virtue of Theorem 2.2 the domain of controllability 

contains a set of points & satisfying the lnequallty 

IJa (t, X0) < K2 0) tE [Of 03) (2.22) 

In conc)uding this section, let us consider the case when the matrices A 
and B are constant. Let us assume that condition (2.18) is satisfSed not 
for all &,#O, then there exlsts a vector A,' #O, such that the Integral 

T 

s 
(B~~~;)~ dt for T -+ + - 

0 

tends to finite limit. Since this integral is an analytic function of T, 
its derivatives tend to zero as T - + m, from which we have 

lim B*(A*)kAo’ = 0 (k = 0, I, * :.) (2.23) 
T-*_tCU 

Taking Into account compliance with condition A, there follows from the 
relation (2.23) 

lim Y (!i”) A,’ = 0 (2.24) 
T++w 

The equality (2.24) shows that the zero solution of the homogeneous sys- 
tem (1.1) is provlsionally asymptotically stable. This latter is possible 
if, and only if, the matrix of this system has eigen numbers with negative 
real parts. This is equivalent to the matrix A having characteristic num- 
bers with positive real parts. Hence, the following theorem Is valid. 

T h e a f e m 2.3. If the matrices A and 3 in the system (0.5) are con- 

stants, where the system of vector columns of the matrix (1.8) has n linear- 

ly Independent vectors, all the characteristic numbers of the matrix A have 

non-positive real parts and 

rank {LO*, e""&*) = 72 

for any t, then problem 2 has a unique SolUtiOn. Problem 1 is uniquely 

solvable only for T >, T,(Y,), h w ere T,(Y,) is the fast-response time in 
the corresponding problem 2. 
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3. Method of rolutlon, Let us first consider the method of solving prob- 
lem 2. Since the optimum control has the form (1.5), to look for it Is suf- 

flcient to find the corresponding initial value A0 of the vector A(t). It 

was shown in [5] that in the case Lo = L,= E, where E is the unit matrix 

of order n, the solution of the prcblem of seeking the initial A0 may be 

reduced to the solution of the problem of seeking the conditional extremum 

of a certain function, where the latter problem may be solved by the gradient 

method. 

The following assertion may be proved. 

T h e o r e m 3.1. The value of the vector & defining the 

trol in problem 2 by means of (1.1) ,achleves a relative minimum 

tion T 

optimum con- 

of the func- 

F~(x,, T) = minF(A,, X0, 2’) =O (F~*o*~o+\ ‘* (t)lB*yA~Idt) (3-i) 
0 

under the conditions 

IA,l=l, K&=0, K,Y((T)A,=O 

This minimum will be a unique relative extremum of the function F and the 

values A,' and 9" achieving the minimum of F, which is zero, are Independent 

of X, E G,. 

Proof It follows from the condition of Theorem 2.1 of section 2 
that rank (K,, K. Y (r))< n. Evidently, 
rank (&,& 'Y [T)) < 

the theorem has meaning only when 
n, as we shall henceforth assume. Let us assume that 

Ad is the value of the vector A0 which defines the optlm 
control by means of (1.5) and which transforms the point % 

fast-response 
E c, into the 

point &E C, in the time 2' along the trajectory of the system (0.5). Then 
by virtue of the boundary conditions 

X*(Y) A (T') = 0, Ad*X, = A@'*xo' A(F) = ‘Y(Y) A,‘, Xe' E C, (3.2) 

Hence 

4'"Ao+ j u,(t)IB* Y A( Iat = 0 (3.3) 

where the value F(Ai, &, T') i", independent of & c & If the assertion 
In the theorem Is incorrect, then F,(X,,T’)<O.It Is not difficult to see 
that F, @&,T').will be continuous function of p, where limPI@ &T’)>O 
as II - + 0, since condition A is satisfied. Hence, there Is found a pc, 
0 < no < 1, such that 

F, co %, T') = 0 (3.4) 

Using the method of Lagrange multipliers, the necessary conditions for 
the minimum (3.4) is obtained In the form 

T’ 

P.Xo Q s Y*BB* YA,” 
1 B*YYAo” 1 

I(* dt $ Ke*Y + Y’ (T’) K,*Z + M,” = 0 

koAoW = 0, K, Y (T’) A,” = 0, &#*a= i 

y+ = (Yp. - * ,YJ, z* = (Zl,..., 23 
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Here Y*, Z* and h are Lagrange multipiers. 
these relations by AD'*; 

Let us multiply the first of 

into account, 
then taking the remaining relations as well as (3.4) 

we obtain X = 0 and then 
T’ 

POX0 9 s Y*BB*‘yA,,” u* dt 

o lB*yb”l 

Let us transform (3.5) to the form 

@((T') I~cX, + K$Y -+ T’Y* 
0 

BU (t, A,“) dt) + K,*Z = 0 

where Q(t) is fundamental, normalized matrix of the system X = AX and 
v(t, no") is defined by means of (1.5). Let us rewrite the last expression 

+ K,* Y + (K,Y (T’))* 2 = 0 (3.5) 

as 
X &,,T') Ji K,*Z = 0 

then it is not difficult to see that the control U(t,&,") transforms the 
oint 1~~x0 + K,*Y, from the& &,X,-d_ K,*Y)= poYa,plane into the point 
&,T)#GZ G1 along the trajectory of the system (0.5) withln the time T' 

and, hence, It will be an optimum fast-response control. On the other hand, 
the control peU(i,A '1 transforms the point pcX,., from the &&&, = paye plane 
Into the point pox T)EG, along the trajectory of the system (0.3) within tf 
the time P'; this contradicts the uniqueness of the optimum control uft,Ac'). 
The theorem is proved. 

Theorem 3.1 says nothing about the set of values &, which achieve the 

relative minimum (3.1). It is easy to prove that this set will be convex 
and closed. In fact, in view of the convexity of the function F the set of 

&, such that F (f&,, X,, T) < 0,wlll be convex and closed. If zero Is here 

the least value of the function F then F (A,, X,, T)>O for any bt from 

which it follows that the set of those &, for which F(h,, X,, T) = 0 
agrees with the set A0 for which F (I&,, X,, T) < 0. q.e.d. 

It was mentioned above that the domain of controllablllty defined by 

Equation (0.5), restriction (0.1) and boundary conditions (0.4) plays a 

large part in the clarlficatlon of the solvability conditions. Theorem 3.1 

shows that the domain of controllability coincides with the set of ail & 

(& = E) for which the function F (for K = 0) achieves the least non-positive 

'value on the intersection of the sphere I&, 1 = 1 with the set Idly& = 0. 

Let us now consider problem 1 by assuming that 2' > T,(Y,), where %(YcI) 

is the fast-response time in the corresponding problem 2. The case T=Z,(Y,) 

Is of no Interest because the control which is optimum with respect to fast 

response, will then be the single admissible control. The optimum control. in 
problem1 is defined bv Formula 

for t E s 
u (t) = 

for IES 
(3.6) 

where .y and s' denote the sets of all t E [o, ?'],for which the dnequallties 

are satisfied, respectively. 
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If the control (3.6) transfers the point X0 E G, into the point 

X (T)E G, 1 a ong the trajectory of the system (0.5), then as has been shown 
in the proof of Theorem 2.1 In Section 2, the following equality 

1V,=h,“X,+~lB*YA,Io(IB*Yh,I)dt +\ IB*YA,ju*dt =o (3.7) 
Y s 

is valid. 

It is now easy to establish a theorem analogous to Theorem 1. 

T h e o r e m 3.2. The value of the Initial vector AO defining the 

optlmum control in problem 1 by means of (3.6) achieves the maximum of the 
function 

under conditions WI = 0, KoAos= 0, K,Y (I’) A,, = 0. The mentioned vdlue 
of A0 Is determlned In a unique manner and Is Independent of X,E Go. 

Proof. Let us show that for a fixed X,, E c,, the set of ho satlsfy- 
lng the relation (3.7) and the transversality conditions will be a bounded 
set of theX,,*Aa<Ohalf-space. In fact for any A0 such that Xo*A,<O the 
measure of the set S(A,) will be not less than a certain positive quantity 
since otherwise the relation (3.1) is violated. 
tion (0.6) and condition A as p + - 

Hence, by virtue of condl- 
the Inequality lim’p-lwl(Xo, p&)>O Is 

correct uniformly in iA0 1 = 1, satisfying the transversallty conditions. It 
follows from above that a u0 > 0 Is found such that w,(&,p&,)>O for p>>clo 
for all A0 subjected to the mentioned restrictions, which proves the required 
boundedness of the set of A0 defined above. Therefore, the function W, 
achieves It; greatest value under the restrictions mentioned In the conditions 
of the theorem. Let us assume that this maximum Is achieved for r\d. Using 
the method of Lagrange multipliers, the necessary conditions for the relative 
extremum of function W, may be written In the form 

s Y*BB*'f'A$ 

S' 
IB*y'Ao'I 'edt+ 

+(~$i)Sd(l~*yA,‘l)~P*~~*‘~~ddtf; KAY +Y*(T)K~*Z=O (3.8) 
s 

&,A, = 0, K, Y (T) Ao’ = 0, w, = 0 

Multiplying the first of equalities C3.8) on the left-hand side by Ad*, 
we obtain 

(!‘ + 1) \ u' (I B*YA,,’ I) (I B*YAo’ 1)s dt = 0 
S 

Hence, there results p + 1 = 0. Consequently, the equality 

T 

[ 
* @ (T) X,, - K,*Y,, + 
s 

Y*BU (t,!Ao’) dt 1 - K1* Z = 0 

IJ 
where U(t,A.,') Is deflned by Formula (3.6),1~ applicable. The obtained 
equality shows that the control U(t,Ad) will be an extremum control In prob- 
lem 1. Hence, if Wz achieves a relative extremum for A,#0 under condl- 
tions (1.2) and (3.7 
by means of Formula t 

then Ao determines the extremal control In problem 1 
5.6). Since the extremal control Is unique, Formula 

(3.6) deplnes the Identical control U(t,&) for any AO achieving the pro- 
vllonal extremum of the function W,. From the agreement of the controls 
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U(t.~o) for different AO In a set S of non-zero measure follows the agreement 
of the vectors B*Y&, In S for different h,, 
condition A. 

which Is impossible by virtue of 
Hence, the uniqueness of the A, which achieves the conditional 

extremum of the function W, Is establisned and thls proves the required as- 
sertion. 

Theorems 3.1 and 3.2 show that to find the optimum controls in problems 1 

and 2 it Is sufficient to find the relative extremum of certain functions, 

In practice, however, it Is considerably more convenient to solve the prob- 

lem of seeking the absolute extremum of certain functions. In the cases 

under consideration, finding the relative extremums can be successfully re- 

duced to problems of seeking the absolute extremums. In fact, In order to 

find the optimum control In problem l,lt Is sufficient to find the absolute 

maximum of the function 

w2 - I Wl I - l/2 (KOAO)” - l/2 WlY m Aoj2 (3.9) 
Analogously, In order to find the optimum control in problem 2, it is 

sufficient to find the absolute minimum of the function 

I F (h,, X,, T) 1 + l/s (&A? + l/s (K,‘J’ 6”) 4J2 (3.101 

which equals zero. The mentioned passage from the relative to the absolute 

extremums Is possible because of the uniqueness of the relative extremums. 

In finding the extremums of (3.9) and (3.10) the gradient method may be 

used 8s Its convergence raises no doubts since the desired extremum is unique. 

In the first case the A, = i~&,/lX,(, where X -C 0 such that w, > 0, might 

be chosen as the Initial approximation and the A, = - X0 / 1 &I In the 

second case. In both cases the point &, may be chosen on the GO plane so 

that the quantity 1% 1 would be a minimum. There remains to describe the 

method of finding the gradient of the functions (3.9) and (3.10). In case 

w,>o, the gradient of the function (1.10) has the form 

AA, s Xo + { Y* BU (t, A,,) dt + Ko* K,A, + Y* (T) K1* K, Y (T) A, 
0 

(3.11) 
The gradient of the function (1.11) has the form 

Aha z sign F (X0 + 5 Y*BU (t, A,) dt) f 
.O 

(3.12) 

+ Ko*KoAo + ‘4’” (T) K,* K,Y (T) Ah, 

The function U(t,&,) In (3.11) Is defined by Expression (3.6) and the 
function U(t,h,) In (3.12) has the form of (1.5). Let us dwell In more de- 

tall on the calculation of the gradient of the function (3.9) by means of 

Formula (3.11). The solution of the system of equations (0.5), where U 1s 

defined by (3.6), with the initial data X(0) = & may be written 

x (T) = Q, (T) (x0 +i Y*BU(hA,W) (3.13) 
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Let us consider the solution of the system of equations 

with the Initial 

z (T) 

z’= -AZ+B(T-t)U(T--t). 

conditions Z (0) = Zo. Then fort = Twe obtain 

= 'J'(-- T)[Z,+j@(t)B(T - t) U (T - t) dt 
I 

(3.15) 
0 

If the change of variable u = T - t is made in the lntergral of the ob- 

tained expression, then (3.15) becomes 

T 

i (T) = Y* (T) Z, + \ Y* (t) B (t) U (t) dt (3.16) 
0 

(3.14) 

Assuming Z,, = K,*K,YI'(T) A, in F ormula (3.16), we then obtain Ex- 
pression 

Ah, = Z (T) + X, + K,* K,A, (3.17) 

for the gradient (3.10). 

In deducing (3.17), it was taken Into account that Lr(P-t) Is obtained 

by means of Formula (3.6) by replacing t by T - t. It Is easy to see that 

the vector y (T - t) A, = 'p (- t) y (!?')'A, IS obtained in integrating 

the system of Equations 
51’ = A*0 (3.18) 

with the Initial data 52 (0) = y (2') A,. Hence, the desired gradient hAc 

may be obtained by means of Formula (3.17), where Z(T) is found by lntegra- 

ting the system of Equations 

i = - AZ + B (T - t) U (T - t, Q), d = A*J1 (3.19) 

between 0 and T with the initial conditions Z (0)~ K,* K,Y(T) A,, and 

0 (0) = Y (T) A,,. Here U (T - t, !2) has the form 
. 

U (T - t, S-2) = 

Hence, the vector Y(T)&, Is found by integrating the 

between 0 and l' with the Initial conditions A(0) = ho. 

is calculated analogously with the sole difference that 

means of Formula (1.5). 

for T -I! ES 

for T - t E S 

system A’ = - A*A 
The gradient (3.X) 
U(t,Ae) Is found by 
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